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The inverse problem in the tangent gas approximation is considered. An exact method for 
designing airfoils is presented. Constraints on the speed distribution are easily implemented. A 
simple numerical algorithm which is fast and accurate is presented. Comparison of designed 
airfoils using the tangent gas method with exact Euler results is found to be excellent for sub- 
critical flows. 0 1986 Academic Press, Inc 

1. INTRODUCTION 

As is well known (see [ 11) certain types of pressure distributions achieve 
aerodynamically desirable features such as delay of transition and boundary layer 
control. The determination of an unknown airfoil from a specified pressure dis- 
tribution is known as the inverse problem. 

Numerous methods for the two dimensional incompressible case exist 12-51. 
Compressible inverse methods are for the most part based on some kind of iterative 
procedure, relying on either a Dirichlet or Neumann-type boundary condition. In 
the Dirichlet formulation [6-l l] a sequence of boundary value problems for the 
velocity potential, with wing geometry updated at each step, is solved. The updated 
condition arises from the normal velocity resulting at each unconverged step. For 
the Neumann formulation [ 12-151 a sequence of analysis problems are solved over 
a corresponding series of geometries. Each geometry is provided by some rational 
method depending on the error being driven to zero. A complete survey of such 
methods has been given by Slooff [ 163. 

In this paper we present an exact method for two-dimensional subsonic flow 
within the limitations of the tangent gas approximation [17-197. Woods [20] 
extensively studied these equations and proposed certain iterative methods for solv- 
ing both the analysis and inverse problems. We presented a substantially different 
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method for the analysis problem [21]. The inverse method developed here is non- 
iterative and exact. 

As is shown in [21] the tangent gas solution lies very close to the Euler solution 
even for high subcritical flows. Therefore the design of an airfoil in this regime by 
our method should be an almost correct airfoil. 

In this paper, we have been able to show that the direct Euler solution over the 
designed airfoil is very close to the input speed distribution. Moreover, the con- 
straints necessitated by upstream condition and closure requirements are very easily 
incorporated. 

2. BASIC EQUATIONS 

Consider steady two-dimensional flow, then in the usual notation 

v~(Pq)=o, vxq=o, p/p’= 1. (1) 

The variables are normalized by their free stream values and linear dimensions by 
an appropriate length scale. 

The stream function II/ and potential 4 are introduced in the usual way 

pq=cVx ($k), s=Vh (2) 

where k denotes a vector perpendicular to the plane of motion. The constant c has 
been introduced for later purposes. 

If s and n are local distances along streamlines and potential lines, respectively, 
(2) can be written as 

ds+idn=i(dcj+iid$). 

Alternately, we can write 

dz=dx+idy=$(dc$+iid$), 

(3) 

(4) 

where x and y are Cartesian coordinates and 19 the flow angle. If q and 8 are taken 
as independent variables, then it is easy to derive from (4) that 

(5) 

If dependent and independent variables are interchanged and the Prandtl Meyer 
function 

y= s :(I1 442,)“‘? (6) 
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Fig. 1. Airfoil in physical z-plane and potential w-plane. 

is introduced in place of q, then 

iI- 
K(v) 

v,=o, 8, + K(v) v4 = 0. 

The f sign refers to subsonic and supersonic conditions, respectively, and 

K(v)=bc, 
P(dM)) 

(7) 

where 

/I’= II -API. (9) 

Typical physical z( =x + iy) and potential w( = 4 + i$) planes are shown in Fig. 1. 
The airfoil maps into a slit in the w plane. The gap BB’ in the potential plane 
corresponds to f, where circulation about the airfoil is -l-. 

The system (7) is augmented by the density speed relation obtained from (1) and 
Bernoulli’s relation 

2 1 4+- 
s 

2 = constant. 
2 YM2, P 

3. MAPPINGS 

The w-plane is mapped onto the exterior of the unit circle in the Q plane by 

w= u(ceCiao + a-‘e’“) + i2a sin ~1~ ln(fr-‘aa), (11) 



314 DARIPA AND SIROVICH 

where circulation -r is related to the constant a by 

r= 471a sin aO. 

From (11) one obtains 

(12) 

dw 

da= -lle 
-&(l ~o-I)(e-~z\~o--I), (13) 

On the body r~ = e” (0 < CI < 27r), 4 and $ are given by 

&a) = 2a[cos(or - a,) - (a - aO) sin a,], $(a) =O. (14) 

a, in (13) is given by 

r,y=7r+2ao. (15) 

Thus the rear and front stagnation points map into (T = 1 and CJ = era,, respec- 
tively. 

4. DETERMINATION OF SPEED IN THE CIRCLE PLANE 

Equation (2) suggests that speed q,(s) on the body is related to the potential 
function 4 by 

q,(s) ds = l4, (16) 

where the subscript s refers to surface values. Equation (14) reduces (16) to 

qS(s) ds = 2alsin a0 + sin(a - axo)i da, O<a627c, (17) 

which is simply an ordinary differential equation for s(a). To integrate (17), we 
introduce 

from which, 

&Co = QMa)) 

dQ = d 1” q,Js’) ds’, 
0 

(18) 

2a[a sin a0 + cos a, - cos(a - a,)], = 

i 

O<a<a, 
2a[2(a, sin a0 + cos ao) - {a sin a0 - cos(a - ao) - cos a,}], a, < a < 27~. 

(19) 

Observe that 

Q(s = 1) = &$a, sin a0 + cos a,,), Q(s = sf) = 2a(a,s sin a0 + 2 cos ao). (20) 
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r is related to Q(s= 1) and Q(s=s~) by 

r=2Q(s=s,)-Q(s= 1)=47casina,. (21) 

Here sI denotes the distance of the front stagnation point from the upperside of the 
trailing edge. Q(s = l), Q(s = sf), and hence f are known from the given surface 
speed distribution q,(s). 

From (20) and (21) 

Q(s=l) 2 
~ =; (a, + cot a()). r (22) 

After (22) is solved for CI~ we obtain the constant a from (21). Next O(U) is com- 
puted from (19) and S(U) is obtained by inverting (18) 

4~) = Q -‘(&4 (23) 

and (1Jtl) = q,(s(a)) is obtained from (17). 
Thus far our deliberations are exact. Ideally system (7) should now be solved to 

determine the body shape. For the tangent gas approximation considered next the 
problem can be solved by an exact method similar to the one in the incompressible 
case [4]. 

5. TANGENT GAS APPROXIMATION 

The tangent gas approximation is given by (see [2 11) 

(p-1)-y 1-i. 
( 1 

From (10) we obtain 

& 
Pa’ 

(24) 

(25) 

where the subscript a denotes a suitable reference point. With the constant c in (8) 
taken as 

c = l/B,> (26) 

we obtain from (8) 

K(v) = 1. (27) 

Then for subsonic flow the system (7) becomes the Cauchy-Riemann equations 

8, - v* = 0, 8, + v, = 0. (28) 
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Equations (28) are exact for both the tangent gas and also for incompressible flow 
(M=O). Henceforth, we take the tangency point (p,, l/p,) to be the free stream, 

p,=pm= 1, pa=pm= 1. (29) 

With this selection the following relations hold [21] 

q = sinh v* cosech(v* - v), p = tanh(v* - v), 
2 

” = 1 - /?,coth v’ (30) 

where the constant v* is given by 

v*=ln 
M 

( ) 
00. 
l-P, 

(31) 

From (6) it is seen that v co = 0 and at a stagnation point (denoted by zero sub- 
script ) 

2 
vg= -co, CP.0 = 1+p,’ (32) 

It follows from (28) that 

z= -v+iCJ (33) 

is an analytic function of w and hence of U. A convenient representation of r(a) is 
given by (see also [S]), 

exp(r(o)) = (1 - c -I)~b(e~ia,-O-l)-I exp (Jo cd-(), (34) 

where 6 = I~!/z, 8, the trailing edge angle. The complex constants c, are denoted by 

c,=An+iB,. (35) 

Note that (34) contains the Kutta condition. Two Schwarz-Christoffel factors 
appear in (33) because of the discontinuity in 8 at the two stagnation points. On 
the unit circle, (33) reduces to 

exp(z(e’“)) = G(g) erqca) exp (:. cHepin’), 

where 

G(a) = 2 sin : I I 
l--6 

12(sin a, + sin(a - fxo))l -l, 

(36) 

(37) 

+)=f(l-@(n-l)+ c(+; -nU(a-a,)+a,. 
( > 

(38) 
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U(a-a,) in (38) is the unit step function. The tangent angle 8, at the body is 

and 

where 

and 

related to 8 by 

e(a) = 8,(a) - 71- nU(a - a,). 

Separation of (36) into real and imaginary parts leads to 

F(a)= f (A,cosna+B,sinna) 
It=0 

co 
B(a)= C (B,cosna-A,sinna)+n+a, 

?I=0 

J(a) = -v(a) - in G(a) 

B(a)=H,(a)-:(I-h)(nl)(a+;). 

Notice from (34) the upstream flow direction 8, is related to B, by 

8,=Bo+7c+2ao, 

where B. is given by 

Bo=+J2xB(a)da-n-ao. 
0 

The free stream condition (q, = 1) is given by 

A,=O. (46) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

The condition for closure of the airfoil is related to the leading terms of the series 
(40) and (41) by (see [21]) 

A,=(l-6)-(l-&,)2sin2ao, (47) 

B,=(l-p,)sin2a,. (48) 

6. BEHAVIOUR AT STAGNATION POINTS 

It is both interesting and useful to study the behavior of speed at the stagnation 
points. From (30) and (42) we obtain 

2p, e-‘s 
q”N1+T- 

for q,-0. (49) 
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From (37) 
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1 t-y2 cos ao) for cc-0 -N 
G(a) Ia,< - a[(2 cos a# for IX-X,. 

From (49) and (50) 

K, LX’ for a-0 
&- 

&la,--C(l for sc-a,, 

where 

K1 = ‘Pm - t? - jsca = O’( 2 cos ao), 
2Pm 

1+B, K2=1+/?m 
- ,-cc==aq2 cos ao)6. 

If a, and CL* are close to LY -0, then from (51) we obtain 

,Jn(B&2)/~*hH 
ln(a2bl 1 

From (51) (52) and (53) we obtain 

;,(a = 0)~ -In 
( 
y~(2cosao)y) 

co 

and 

?,,(a = a,) - -In 
( 

1 + Pm (2 cos ao)-6 ) 4s(af) 
Ia/ - % 28, > 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

where ttf is close to c(, and c1i is close to zero. 

7. METHOD OF SOLUTION 

The speed distribution q3(s) is usually given at a finite number of points sj, .j= 
0, 1, 2,..., in the interval 0 <S < 1. From this the integral in Eq. (18) can be evaluated 
to obtain Q(s,) as a function of qs(si). Next the circulation f is computed from the 
relation 

l-=2Q(s=s,)- Q(s= 1). 

Equation (22) is then solved to obtain a,. The second equation of (20) is next used 
to calculate the value of the constant a. In general ~1~ and a so obtained do not 
satisfy the first equation of (20) exactly because a, is calculated numerically. If 

Q(S = 1) - Q(s = sf) = !-’ q6 ds 
si 
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differs slightly from Q(s = sf) - 47~2 sin ~1~ (see Eq. (21)), the speed q,(s) is modified 
by a constant factor over the interval sr< s < 1 to adjust the above integral to this 
value. 

The values of D(cx~) at N (a power of 2) equally spaced points on the unit circle, 
u, = 2rcj/N, j= 0, l,..., N, are calculated using Eq. (19). The value of speed qS(aj) at 
the grid points 01~ are now easily obtained by interpolation since q,Jsj) is already 
known as a function of Q(s,). 

The approximate value of the trailing edge angle 6 is obtained from Eq. (53). 
S,(a) is then obtained from Eqs. (42), (37), and (30) and its value at a stagnation 
point is calculated from (54) and (55). If C,(a) satisfies the constraints (46) (47), 
and (48) then the conjugate function &a) is calculated from (41) using the fast 
fourier transform. In case C,(a) does not satisfy the constraints, the prescribed speed 
distribution must be modified. This is discussed in the next section. 

The value of the constant B, in (41) which is also needed to calculate P(U) is 
obtained from (44) by setting the free stream direction 0, to zero. The tangent 
angle 8, at the body is now obtained from &cc) using the relation (43). The body 
coordinates are then calculated from 

cos O,(a) da, 

y(a) = 6 2 sin 8,(a) da, 

where ds/da is given by 

lsin CI~ + sin(a - a,)[ 

qs(cO ’ 
(57) 

The value of (57) at a stagnation point (a = 0, a = a,) is given by (see Eq. (51)) 

cosao ,-6 
ds 

2a-cc 
K, 

da cos a0 
2a- 

K2 

for a=0 

for c( = ~1,~. 
(58) 

Instead of calculating 6 from Eq. (53) as was done above, one can prescribe 6 
because the constraints (46), (47), and (48) depend on 6. Modification of the speed 
distribution subject to these constraints will automatically satisfy the Eq. (53) 
because this equation is valid if the speed distribution is consistent with those con- 
straints. In either case if v”,(a) obtained from a given speed distribution does not 
satisfy the constraints then the prescribed speed distribution must be modified 
according to the method discussed in the next section. 

Even though the above method is exact theoretically, there are numerical sources 
of error. These errors depend on the kind of interpolation and integration scheme, 
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the number of data points, the number of grid points, the evaluation of a, from (22) 
and the use of the approximate expressions (53), (54), and (55) to calculate trailing 
edge angle 6, ?,(a = 0), and F,(c( = c1,), respectively. 

In view of the simplicity of the procedure no attempt was made to incorporate 
highly accurate computations. Simpson’s rule with evenly spaced grid points and 
trapezoidal rule with unevenly spaced data points were used for integration. The 
interpolation scheme used was linear. The speed q,(s) was prescribed at 129 
unevenly spaced data points on 0 <s 6 1 and the number of grid points on the unit 
circle was taken to be 128. a, was obtained within an accuracy of 10e6 by solving 
Eq. (22) by regular falsi method and the trailing edge angle 6 used was calculated 
by using the approximate relation (55). 

The program was run on an IBM 3081 in single precision and the computation 
time was about a half second in most cases. 

8. MODIFICATION OF SPEED DISTRIBUTION 

Constraints (46), (47), and (48) must be satisfied by the prescribed speed dis- 
tribution to find a closed body solution. Therefore in general any arbitrary speed 
distribution must be modified subject to these constraints. These constraints can be 
written in terms of surface values f,(a) given by 

1 
i 

2n 
- 

710 
C,s(a) gj(a) dci = P,, j= 1,2, 3, 

where gj(m) and Pi are given by (see (46), (47), and (48)) 

j=l 

j=2 

j=3 

(60) 

and 

0, 
j=l 

(l-s)-(l-b,)2sin2a,, j=2 (61) 

(1-Bco)sin2a,, j= 3. 

Linearity of (28) implies the following form of modification of prescribed values 
f,(a) (see C41) 
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where yk, k= 1, 2, 3, are constants to be determined and &(a), k = 1,2, 3, are 
suitable correction terms. The correction terms can be set to zero outside a specified 
interval (a,, ~1~) leaving speed distribution same as the prescribed one outside this 
interval. This is extremely useful when designing an airfoil where in general no 
modification of speed distribution over the suction side is desired. The speed dis- 
tribution can be modified in various ways depending on the choice of functions 
&(a), k = 1, 2, 3, and the correction interval (aI7 a2). 

Substituting (62) in (59) one obtains 

3 

1 Ykalk = b.,, j= 1, 2, 3, 
k=l 

where 

(63) 

(64) 

bj=nPj- [Ix V”,,(a) g,(a) da = xPj- j” P,(a) gj(a) da. (65) 
z, 

Constants yk, k = 1, 2, 3, are obtained by inverting (63) and the corrected v”,(a) is 
then obtained from (62). The corrected speed distribution is then obtained from 
(42) and (30) and the body is found from (55). 

The matrix ajk in (65) must be positive definite to be able to invert (63) which 
restricts the choice offk(a), aI, and al. These should be carefully selected so that 
the correction to a prescribed speed distribution is minimum. This can be done in 
the same spirit as in Strand [22] and Arlinger [4]. 

For our purpose we choose cc, = 0, a, = 27c and fk(tl) = gk(@), k = 1, 2, 3. This 
modifies the speed distribution over the whole interval. In this case (63) gives 

b, 
Yl =Tj--$ y2=bz 

7-c’ 
and Y3,3 

?r 

and hence (62) becomes 

C,(a) = C,(a) + & (b, + 2b2 cos a + 2b, sin a). 

9. RESULTS 

(66) 

(67) 

A basic test of the inverse method is the recovery of a known airfoil from its 
pressure distribution. Figures 2 and 3 provide a verification of the method within 
the tangent gas approximation. Here a pressure distribution is computed in tangent 
gas approximation over a NACA 4412 airfoil (see [21]). Speed distribution is com- 
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+-UPPER SIDE -LOWER SIDE - 
- INPUT PRESSURE DlSTRlBUTlON 

T+++ PRESSURE D,STRIB”T,ON ON DESlGNED AIRFOIL 

FIG. 2. Comparison of pressure distributions on NACA 4412 airfoil (input) and on designed airfoil 
from tangent gas solution at free stream Mach number 0.7 and zero angle of attack. 

puted from this pressure distribution using Eqs. (30). Then the airfoil is designed 
from this speed distribution by the method discussed in Section 7. In Fig. 2 we show 
the pressure distribution over a NACA 4412 airfoil as calculated by the tangent gas 
and compare it with the pressure over the designed airfoil. The error is less than 
0( 10P3). Figure 3 compares the given airfoil with the designed airfoil. The error is 
less than 0( lo-“). (The origin of these errors is numerical and was discussed in 
Section 7.) 

Figure 4 shows a pressure distribution which did not satisfy the constraints (46) 
(47), and (48). The pressure distribution which results from the correction 
according to (67) is shown in the same figure. The resulting body along with its 
design and analysis pressure is shown in Fig. 5. 

__ AIRFOIL NACA 4112 

+ + “ESILNED AlRFOlL 

FIG. 3. Comparison of NACA4412 airfoil and the airfoil designed by tangent gas approximation 
from input pressure distribution of Fig. 2. 
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0 

++*+* t - lNP”T 
+*** 

/ 

-*\ 
+* +++ CORRECTED CP 

*+ ++ 
+* \ 

*+ 
++ *+**1, 
+ *t * * +! 

L 
0.2 

+-UPPER SIDE-LOWER SlDE F 

FIG. 4. Target and corrected pressure distribution. 

MACH -0 50 a=0 0 c,=i 06397 c,=o 00078 

FIG. 5. Designed airfoil from input pressure distribution of Fig. 4 and pressure distribution on 
designed airfoil from design and direct analysis by tangent gas method. 
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FIG. 6. Speed distribution on NACAO012 airfoil from Euler solution (FL052S) at M, =0.6 and 
a = 0.0. 

Next, we wish to evaluate the usefulness of the tangent gas method by comparing 
its results with comparable results gotten from the exact Euler equations. For this 
purpose we use FL052S written by A. Jameson, M. Salas, and E. Turkel. The 
pressure distribution obtained from the Euler code is used to compute the speed 
distribution according to the relation 

(68) 

which is the same for the tangent gas and ideal gas. The subscript 0 referes to the 
stagnation point values (normalized by free stream values) as mentioned in Sec- 
tion 5. The po/pO in (68) is given by the ideal gas relations (see [23]) 

PO/PO= ( y - 1 
1+-e 

> 
(69) 

;iij; 

0 0.2 0.1 06 1 

- AlRFOlL NA‘A 0012 

++ DESIGNED AlRFOlL 

FIG. 7. Comparison of NACAO012 and the airfoil designed by tangent gas approximation from 
speed distribution of Fig. 6. 
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This speed distribution is used to design the airfoil by the method mentioned 
before. Figure 6 shows the speed distribution on a NACAO012 airfoil as calculated 
from the Euler equations at free stream Mach number 0.6 and zero angle of attack. 
Figure 7 compares the NACAO012 airfoil and the designed airfoil in the tangent gas 
approximation. It is seen that the airfoil is almost exactly recovered along with the 
zero angle of attack. The pointwise error is less than 3 % and this only occurs in a 
small neighborhood of the leading edge. Figure 8 compares the Euler pressure with 
the pressure over the designed airfoil. Again the comparison is excellent except near 
the leading edge where the error in C, is 0( 10 ~ *). It is to be emphasized that this 
error occurs as a result of using the tangent gas approximation and is in no way 
numerical. We believe on the basis of this discussion that this recommends the use 
of the method presented here for airfoil design especially since it is computationally 
very efficient. 

In the next example we push the method beyond its limits by considering a 
supercritical case. We show in Fig. 9 the Euler speed distribution over a NACAO012 
airfoil at free stream Mach number 0.5 and angle of attack 5”. Figure 10 shows that 
we recover the correct angle of attack and the airfoil except over a small region 

I 
I”“” “’ 

FIG. 8. Comparison of Euler pressure distributions over NACAO012 airfoil and the airfoil designed 
from speed distribution of Fig. 6 at M, = 0.6 and a = 0.0. 

581/63/2-6 
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FIG. 9. Speed distribution on NACAW12 airfoil from Euler solution (FL052S) at M, =OS and 
r=S”. 

near the nose where the error is within 2%, and where the flow is actually super- 
critical. Again the error is nonnumerical and gives a measure of the deviation of the 
tangent gas approximation from the exact Euler result. In Fig. 11 we compare the 
Euler solution over the NACAO012 airfoil and designed airfoil. Note that the 
agreement near the leading edge is not as good as elsewhere because the designed 
airfoil suffers maximum deviation from the NACAO012 airfoil near the leading edge. 

Finally a useful application of our approximate method is to provide a starting 
airfoil in a design procedure in which the Euler equations are used directly to give 
the corrected pressure distribution. At successive stages the pressure distribution is 

-o.K$-- ’ ’ 02 0.4 06 08 1 

- AIRFOL NACA 0012 

++ DESlGNED NRFOL 

FIG. 10. Comparison of NACAO012 and the airfoil designed by tangent gas approximation from 
speed distribution of Fig. 9. 
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-s.,,,,,,,.,..,,,.,,., ,, 
++ 

Om,,,,,,‘,,,. “I’ I’ “1 

FIG. 11. Comparison of Euler pressure distributions over NACAO012 airfoil and the airfoil designed 
from speed distribution of Fig. 9 at M, = 0.5 and a = 5”. 

modified to meet the design criteria and the inverse method reapplied and so forth. 
The interactive iteration should go quite quickly for subcritical flows. However, the 
value of such a procedure remains uncertain for supercritical flows. 
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